The Cauchy Process and the Steklov Problem

نویسندگان

  • Rodrigo Bañuelos
  • Tadeusz Kulczycki
چکیده

Let Xt be a Cauchy process in R, d ≥ 1. We investigate some of the fine spectral theoretic properties of the semigroup of this process killed upon leaving a domain D. We establish a connection between the semigroup of this process and a mixed boundary value problem for the Laplacian in one dimension higher, known as the “Mixed Steklov Problem.” Using this we derive a variational characterization for the eigenvalues of the Cauchy process in D. This characterization leads to many detailed properties of the eigenvalues and eigenfunctions for the Cauchy process inspired by those for Brownian motion. Our results are new even in the simplest geometric setting of the interval (−1, 1) where we obtain more precise information on the size of the second and third eigenvalues and on the geometry of their corresponding eigenfunctions. Such results, although trivial for the Laplacian, take considerable work to prove for the Cauchy processes and remain open for general symmetric α–stable processes. Along the way we present other general properties of the eigenfunctions, such as real analyticity, which even though well known in the case of the Laplacian, are not rarely available for more general symmetric α–stable processes. ∗Supported in part by NSF Grant # 9700585-DMS †Supported by KBN grant 2 P03A 041 22 and RTN Harmonic Analysis and Related Problems, contract HPRN-CT-2001-00273-HARP

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral gap for the Cauchy process on convex, symmetric domains

Let D ⊂ R be a bounded convex domain which is symmetric relative to both coordinate axes. Assume that [−a, a] × [−b, b], a ≥ b > 0 is the smallest rectangle (with sides parallel to the coordinate axes) containing D. Let {λn}n=1 be the eigenvalues corresponding to the semigroup of the Cauchy process killed upon exiting D. We obtain the following estimate on the spectral gap: λ2 − λ1 ≥ Cb a2 , wh...

متن کامل

Infinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator

By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf

متن کامل

Adomian Decomposition Method On Nonlinear Singular Cauchy Problem of Euler-Poisson- Darbuox equation

n this paper, we apply Picard’s Iteration Method followed by Adomian Decomposition Method to solve a nonlinear Singular Cauchy Problem of Euler- Poisson- Darboux Equation. The solution of the problem is much simplified and shorter to arriving at the solution as compared to the technique applied by Carroll and Showalter (1976)in the solution of Singular Cauchy Problem. 

متن کامل

Existence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation

‎In this paper‎, ‎we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation‎. ‎Moreover‎, ‎the finite-time blow-up of the solution for the equation is investigated by the concavity method‎.

متن کامل

Schwarz boundary problem on a triangle

In this paper, the Schwarz boundary value problem (BVP) for the inhomogeneous Cauchy-Riemann equation in a triangle is investigated explicitly. Firstly, by the technique of parquetingreflection and the Cauchy-Pompeiu representation formula a modified Cauchy-Schwarz representation formula is obtained. Then, the solution of the Schwarz BVP is explicitly solved. In particular, the boundary behavio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003